If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9x2 + 640x + -5500 = 0 Reorder the terms: -5500 + 640x + 9x2 = 0 Solving -5500 + 640x + 9x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. -611.1111111 + 71.11111111x + x2 = 0 Move the constant term to the right: Add '611.1111111' to each side of the equation. -611.1111111 + 71.11111111x + 611.1111111 + x2 = 0 + 611.1111111 Reorder the terms: -611.1111111 + 611.1111111 + 71.11111111x + x2 = 0 + 611.1111111 Combine like terms: -611.1111111 + 611.1111111 = 0.0000000 0.0000000 + 71.11111111x + x2 = 0 + 611.1111111 71.11111111x + x2 = 0 + 611.1111111 Combine like terms: 0 + 611.1111111 = 611.1111111 71.11111111x + x2 = 611.1111111 The x term is 71.11111111x. Take half its coefficient (35.55555556). Square it (1264.197531) and add it to both sides. Add '1264.197531' to each side of the equation. 71.11111111x + 1264.197531 + x2 = 611.1111111 + 1264.197531 Reorder the terms: 1264.197531 + 71.11111111x + x2 = 611.1111111 + 1264.197531 Combine like terms: 611.1111111 + 1264.197531 = 1875.3086421 1264.197531 + 71.11111111x + x2 = 1875.3086421 Factor a perfect square on the left side: (x + 35.55555556)(x + 35.55555556) = 1875.3086421 Calculate the square root of the right side: 43.304833935 Break this problem into two subproblems by setting (x + 35.55555556) equal to 43.304833935 and -43.304833935.Subproblem 1
x + 35.55555556 = 43.304833935 Simplifying x + 35.55555556 = 43.304833935 Reorder the terms: 35.55555556 + x = 43.304833935 Solving 35.55555556 + x = 43.304833935 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-35.55555556' to each side of the equation. 35.55555556 + -35.55555556 + x = 43.304833935 + -35.55555556 Combine like terms: 35.55555556 + -35.55555556 = 0.00000000 0.00000000 + x = 43.304833935 + -35.55555556 x = 43.304833935 + -35.55555556 Combine like terms: 43.304833935 + -35.55555556 = 7.749278375 x = 7.749278375 Simplifying x = 7.749278375Subproblem 2
x + 35.55555556 = -43.304833935 Simplifying x + 35.55555556 = -43.304833935 Reorder the terms: 35.55555556 + x = -43.304833935 Solving 35.55555556 + x = -43.304833935 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-35.55555556' to each side of the equation. 35.55555556 + -35.55555556 + x = -43.304833935 + -35.55555556 Combine like terms: 35.55555556 + -35.55555556 = 0.00000000 0.00000000 + x = -43.304833935 + -35.55555556 x = -43.304833935 + -35.55555556 Combine like terms: -43.304833935 + -35.55555556 = -78.860389495 x = -78.860389495 Simplifying x = -78.860389495Solution
The solution to the problem is based on the solutions from the subproblems. x = {7.749278375, -78.860389495}
| 6x+8x-63=42-7x | | -3+bx=12 | | 5y+2=5y | | 4x-30=2x+10 | | 445=X+3X+180+1.5X | | -2z(2)+4z+2z(2)= | | 330=6(8-7x)-5x | | 10x-13=x | | 3+4x+1-2x=-4+6x+6-5x | | x^3-11x^2+30x=6 | | 0.8m+4=8 | | 3(a-3)=6a | | 9x+1=6x-17 | | 4x+x-7=5-x | | (X^4)-(2x^2)=2x^2 | | 12=-4n-8n | | 6n-6+3n+4=9+7n+1 | | -[d+2]=7 | | 7+x-(43)=3 | | 3m-2=5m+-m | | 8n-17=6n+7 | | -3d+10=53 | | 69c-39=95c+3 | | 7x^2-49x+7=0 | | 5(y-2)=2(y-9)+3y | | 150m-75m+43875=45900-150m | | 3x+23+3x-3=58-3x+34 | | f(-2)=3(-2)+2 | | 2g+8g+3g= | | 200m-75m+61750=65325-200m | | 100+8x=100+12x | | -2(x+2)+5x=-1 |